

MATHEMATIQUES Vecteurs, droites et plans de l'espace : entraı̂nement savoir-faire (1)

Chapitre 4 : Vecteurs, droites et plans de l'espace.	Evaluation
40. Représenter et utiliser une combinaison linéaire de vecteurs donnés pour résoudre un	
problème.	•• • • • ••

Exercice 1

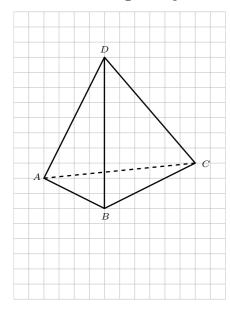
On considère un tétraèdre ABCD.

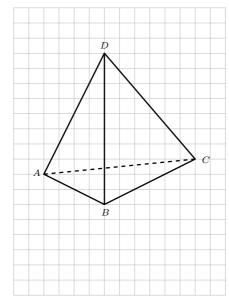
Placer les points M, N et P définis par :

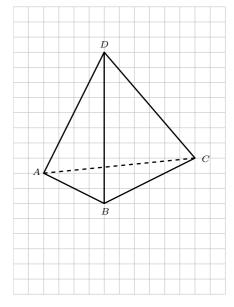
$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{3}{5}\overrightarrow{DB}$$

$$\overrightarrow{CN} = -\frac{1}{3}\overrightarrow{BC} + \frac{3}{2}\overrightarrow{BA} \qquad \overrightarrow{BP} = \frac{6}{5}\overrightarrow{BD} + \overrightarrow{AB}$$

$$\overrightarrow{BP} = \frac{6}{5}\overrightarrow{BD} + \overrightarrow{AB}$$





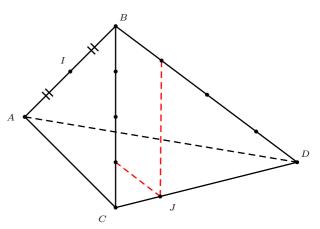


Exercice 2 40

ABCD est un tétraèdre. On appelle I le milieu de [AB] et J un point sur [CD].

- 1. A l'aide des graduations régulières de la figure, exprimer \overrightarrow{BJ} comme combinaison linéaire des vecteurs \overrightarrow{BC} et \overrightarrow{BD} .
- **2.** Exprimer le vecteur \overrightarrow{IB} en fonction de \overrightarrow{AB} .
- 3. En déduire une expression de \overrightarrow{IJ} comme combinaison linéaire des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .

																											 			•
																														•

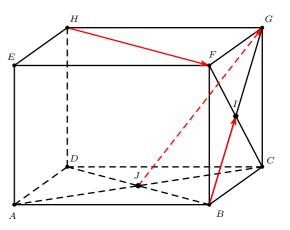


Exercice 3 40

ABCDEFGH est le parallélépipède rectangle représenté ci-

I est le milieu du segment $\left[BC\right]$ et J est le milieu du segment

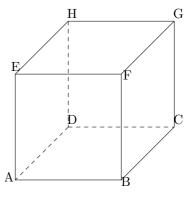
Démontrer que les vecteurs \overrightarrow{BI} , \overrightarrow{JG} et \overrightarrow{HF} sont coplanaires.



• • •	٠.	٠.	• •	• •	• •	٠.	• •	• •	• •	 • •	٠.		• •	٠.	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	٠.	٠.	• •	٠.	٠.	٠.	 	• •	• •	٠.	 ٠.	• •	 • •	٠.	٠.	 • •	• • •	 • • •	• •	• • •
	٠.		٠.		٠.	٠.			• •	 		. 					• •					٠.	٠.	٠.	٠.	٠.	٠.			٠.	 		٠.		 ٠.		 	٠.	٠.	 ٠.	• • •	 • • •		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 											٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		٠.		 ٠.	٠.	 	٠.	٠.	 ٠.		 		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.			 											٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 		٠.		 ٠.		 	٠.	٠.	 ٠.		 • •		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.			 											٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 		٠.		 ٠.		 	٠.	٠.	 ٠.		 • •		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.			 											٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 		٠.		 ٠.		 	٠.	٠.	 ٠.		 • •		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.			 											٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 		٠.		 ٠.		 	٠.	٠.	 ٠.		 • •		
			٠.	٠.	٠.	٠.				 		. 										٠.	٠.	٠.	٠.	٠.	٠.				 				 ٠.		 		٠.	 		 • •		
			٠.	٠.	٠.	٠.				 		. 										٠.	٠.	٠.	٠.	٠.	٠.				 				 ٠.		 		٠.	 		 • •		
		٠.	٠.	٠.	٠.	٠.				 		. 										٠.	٠.	٠.	٠.	٠.	٠.			٠.	 				 ٠.		 		٠.	 		 • •		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.			 											٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 		٠.		 ٠.		 	٠.	٠.	 ٠.		 • •		
	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		 					٠.						٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		٠.	 		٠.		 ٠.		 	٠.	٠.	 ٠.		 • •		

Exercice 4 $\boxed{\ \ }$ On considère le cube ABCDEFGH ci-contre. Les vecteurs suivants sont-ils coplanaires?

a.
$$\overrightarrow{EF}$$
, \overrightarrow{BC} et \overrightarrow{AC} .
b. \overrightarrow{AD} , \overrightarrow{CG} et \overrightarrow{DC} .



•	٠.	•	٠.	•	• •	•	•	• •	•	•	• •	•	• •	٠.	•	•	•	•	•	•	• •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	• •	 •	•	•	•	•	•	 •	•	•	•	 •	•	•	• •	•	•	•	• •	•	•	• •	•	•	 •	•	• •	•	•	•	٠.	•	•	•	 •	•	٠	• •	• •	•	•	٠.	•	•	•
		•		•		•						•	٠.		•				•	•			•			•						•	•	•					•								•			•		•	•				•		•		 •			•				•	•			•	•						•		•
		•		•		•						•	٠.		•				•	•			•			•						•	•	•					•								•			•		•	•				•		•		 •			•				•	•			•	•						•		•
•						•									•			•	•	•		•	•		 •	•	•			•	•	•	•					 •		•						•	•									•				•	 ٠	•		•	•				•		 •	•	٠				•		•	•	
•				•		•									•								•										•						•													•					•		•			•		•					•				•				•			•	•
•			٠.			•									•								•				•			•			•							•												•								•	 •			•					•				•							•	
•			٠.			•									•								•				•			•			•							•												•								•	 •			•					•				•							•	

2

Exercice 5

On considère un tétraèdre ABCD.

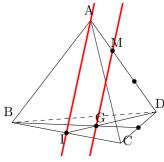
I est le milieu de [BC]; G est le centre de gravité du triangle BCD. M est le point tel que :

$$\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AD}$$

1. a.

Exprimer le vecteur \overrightarrow{MG} en fonction des vecteurs \overrightarrow{AD} et \overrightarrow{DI} .

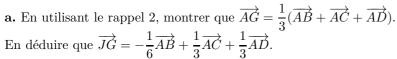
b. En déduire que les droites (AI) et (MG) sont parallèles.

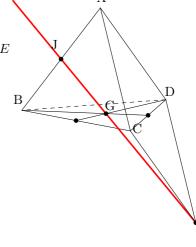


Rappel 1 : Le centre de gravité d'un triangle est le point de concours de ses trois médianes et se situe au $\frac{2}{3}$ de chacun de ses sommets.

Rappel 2 : Le centre de gravité G du triangle BCD vérifie la relation vectorielle : $\overrightarrow{BG} + \overrightarrow{CG} + \overrightarrow{DG} = \overrightarrow{0}$.

2. Dans ce même tétraèdre, on considère le point J milieu de [AB] et Etel que CADE est un parallélogramme.





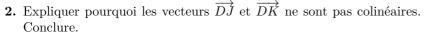
Exercice 6 40

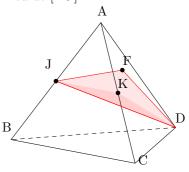
On considère un tétraèdre ABCD. J est le milieu de [AB] et K est le milieu de [AC].

On considère le point E tel que $\overrightarrow{CE} = \frac{1}{2}\overrightarrow{BC}$ et F tel que $\overrightarrow{AF} = \overrightarrow{DE}$.

L'objectif de cet exercice est de montrer que $F \in (DJK)$.

- **1. a.** Exprimer les vecteurs \overrightarrow{DJ} , \overrightarrow{DK} et \overrightarrow{DF} en fonction des vecteurs \overrightarrow{DA} , \overrightarrow{DB} et \overrightarrow{DC} .
 - **b.** En déduire que $\overrightarrow{DF} = -\overrightarrow{DJ} + 3\overrightarrow{DK}$





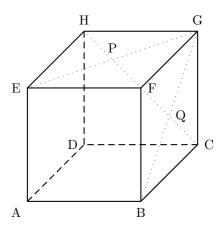
$_{ullet}^{\mathrm{E}}$	

 	 	 	 	 	• • •	 	 	 	 	 		 		 		 • • • •	 	• • •
 	 • • •	 • • • •	 	 		 	 	 	 	 		 		 		 	 	
 	 • • •	 • • • •	 	 		 • • •	 	 	 	 	• • •	 	• • •	 	• • •	 • • • •	 	
 	 • • •	 • • • •	 	 		 	 	 	 	 		 		 		 • • • •	 	
 	 • • •	 • • • •	 	 		 	 	 	 	 		 		 		 • • • •	 	
 	 • • •	 • • • •	 	 		 	 	 	 	 		 		 		 • • • •	 	
 	 • • •	 • • • •	 	 		 	 	 	 	 		 		 		 • • • •	 	
 	 • • •	 • • • •	 	 		 	 	 	 	 		 		 		 • • • •	 	
 	 	 • • • •	 	 		 	 	 	 	 		 		 		 	 	· • •
 	 	 • • • •	 	 		 	 	 	 	 		 		 		 	 	· • •

Exercice 7 40

ABCDEFGH est un cube dont l'arête mesure 2 cm. P et Q sont les centres respectifs des faces EFGH et BCGF.

- 1. Tracer en vraie grandeur le patron du cube (avec les points P et Q).
- **2.** Calculer EP.
- **3.** En quel point le triangle AEP est-il rectangle?
- 4. En déduire que $AP = \sqrt{6}$ cm.
- **5.** En utilisant le triangle BEG, calculer PQ.
- **6.** Quel nom peut-on donner au solide GEBF? Calculer alors son volume.



																																																				٠.	
•	•	•	 •		•		٠	 ٠		٠	 	•	•	 •		•		•	•	 	•	•	•	 •	•	 	•	 	•	•	 •	•	 •	•	 •	•	 ٠		•	 ٠	 ٠	 •	 •	•	 •	•	 •	 	•	 	•	٠.	 •
•			 •		•						 	•				•		•		 		•				 	•	 	•		 •	•	 •	•	 •	•			•			 •	 •	•	 •			 		 		٠.	 •
			 •								 									 						 		 																				 		 			