

MATHEMATIQUES Dérivation, continuité et convexité : entraînement savoir-faire (corrigé)

Exercice 1

1. f est de la forme \sqrt{u} . La fonction $u: x \longmapsto x^2 + 2x + 4$ est strictement positive sur \mathbb{R} .

En effet, $\Delta = 2^2 - 4 \times 1 \times 4 = -12 < 0$ et a = 1 > 0.

Comme $\Delta < 0$, le trinôme est toujours du signe de a.

Second degré

La fonction $f = \sqrt{u}$ est donc dérivable sur \mathbb{R} .

On a $f' = \frac{u'}{2\sqrt{u}}$ avec, pour tout $x \in \mathbb{R}$, u'(x) = 2x + 2.

Dérivabilité

Si u > 0 sur I et u dérivable sur I, alors \sqrt{u} est dérivable sur I.

Pour tout $x \in \mathbb{R}$:

$$f'(x) = \frac{2x+2}{2\sqrt{x^2+2x+4}} = \frac{x+1}{\sqrt{x^2+2x+4}}$$

2. La fonction $u: x \longmapsto -4x^2 + 5x - 1$ est une fonction polynôme donc dérivable sur \mathbb{R} .

La fonction f de la forme u^n avec n=3 est donc dérivable sur \mathbb{R} .

Automatisme

On a $f' = 3u'u^2$ avec, pour tout $x \in \mathbb{R} : u'(x) = -8x + 5$.

Toujours rechercher la forme de la fonction pour calculer sa dérivée.

Pour tout $x \in \mathbb{R}$:

 $f'(x) = 3(-8x+5)(-4x^2+5x-1)$

Conseil

Il est inutile et déconseillé de développer f'car sa forme factorisée permet d'étudier son

3. La fonction affine $u: x \longmapsto 2x - 6$ est dérivable sur \mathbb{R} mais s'annule en x = 3.

La fonction g de la forme $\frac{1}{u^p} = u^{-p}$ avec p = 4 est donc dérivable $\operatorname{sur}] - \infty ; 3 [\operatorname{et} \operatorname{sur}] 3 ; + \infty [$

On a $g' = -4u'u^{-5} = \frac{-4u'}{n^5}$ avec u'(x) = 2.

Pensez-y!

La formule $(u^n)' = nu'u^{n-1}$ est valable si $n\leqslant -1$ à condition évidement que $u(x)\neq 0$ (et que u soit dérivable sur I).

Pour tout $x \neq 3$:

$$g'(x) = \frac{-8}{(2x-6)^5}$$

Exercice 2

1. f est du type \sqrt{u} avec $u(x) = x^2 - x - 2$.

Or, u(x) est un trinôme de degré 2 ayant deux racines : -1 et 2.

u(x) est du signe de a sauf entre ses racines. On obtient le tableau de signes :

x	$-\infty$		-1		2		$+\infty$
u(x)		+	0	_	0	+	

Ainsi, $u(x) \ge 0$ si $x \le -1$ ou $x \ge 2$ et f est définie sur $\mathcal{D} =]-\infty$; $-1] \cup [2; +\infty[$. Et comme $f = \sqrt{u}$ est dérivable sur \mathcal{D} sauf là où u s'annule alors $\mathcal{D}' =]-\infty$; $-1[\cup]2; +\infty[$.

On a u'(x) = 2x - 1 d'où :

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{2x-1}{2\sqrt{x^2 - x - 2}}$$

2. f est du type u^2 avec $u(x) = \frac{3x-1}{2x-4}$. Or, u est définie sur $\mathbb{R} \setminus \{2\}$ donc f est définie sur $\mathcal{D} = \mathbb{R} \setminus \{2\}$.

Fonction rationnelle

u est une fonction rationnelle. Elle est donc dérivable sur son ensemble de définition. On utilise la dérivée d'un quotient pour dériver u.

f est dérivable sur son ensemble de définition donc $\mathcal{D}' = \mathcal{D}$.

On a
$$u'(x) = \frac{3(2x-4) - 2(3x-1)}{(2x-4)^2} = \frac{-10}{(2x-4)^2}.$$

D'où:

$$f'(x) = 2u'(x)u^{2-1}(x)$$

$$= 2u'(x)u(x)$$

$$= 2 \times \frac{-10}{(2x-4)^2} \times \frac{3x-1}{2x-4}$$

$$= -\frac{20(3x-1)}{(2x-4)^3}$$

Formule

La dérivée de u^2 est 2uu'. Quand on connaît la dérivée de x^2 , on connaît celle de u^2 . C'est la même (en remplaçant x par u, bien sûr) mais on multiplie derrière par u'.

Dérivée de $x \longmapsto x^2$ c'est $x \longmapsto 2x$, donc dérivée de u^2 , c'est $2u \times u'$.

3. $f(x) = (\sqrt{x} - 1)^{-3}$ est du type u^{-3} avec $u(x) = \sqrt{x} - 1$. Or, u est définie sur $[0; +\infty[$ et f aussi sauf là où u s'annule. Donc, $\mathcal{D} = [0; 1[\cup]1; +\infty[$. La fonction $x \mapsto \sqrt{x}$ n'est pas dérivable en 0 donc u et f aussi. Ainsi, $\mathcal{D}' =]0; 1[\cup]1; +\infty[$. On a $u'(x) = \frac{1}{2\sqrt{x}}$ d'où:

$$f'(x) = -3u'(x)u^{-3-1}(x)$$

$$= -3u'(x)u^{-4}(x)$$

$$= -\frac{3}{2\sqrt{x}(\sqrt{x}-1)^4}$$

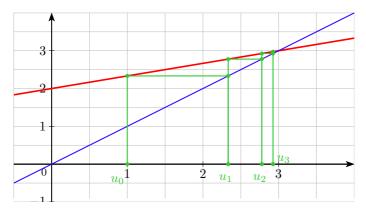
4. On pourrait voir le type u^5 . Voyons plutôt le type u(ax+b) avec $u(x)=x^5$, a=2 et b=-3. Il est évident que $\mathcal{D}=\mathcal{D}'=\mathbb{R}$ vu que f est une fonction polynôme de degré 5! On a $u'(x)=5x^4$ d'où :

$$f'(x) = au'(ax + b)$$

$$= 2u'(2x - 3)$$

$$= 2 \times 5(2x - 3)^{4}$$

$$= 10(2x - 3)^{4}$$



- 1. Voir le graphique ci-dessus.
- 2. On procède par récurrence.

On cherche donc à démontrer que, pour tout $n \in \mathbb{N}$, on a $1 \leq u_n < u_{n+1} \leq 3$.

• Initialisation à n=0

On a $1 \le u_0 < u_1 \le 3$.

Donc la propriété est vraie au rang 0.

• Hérédité

On suppose qu'il existe $n \in \mathbb{N}$ tel que $1 \leq u_n < u_{n+1} \leq 3$.

On cherche à démontrer que $1 \leq u_{n+1} < u_{n+2} \leq 3$.

$$1 \leqslant u_n < u_{n+1} \leqslant 3.$$

$$\frac{1}{3} \leqslant \frac{1}{3} u_n < \frac{1}{3} u_{n+1} \leqslant 1$$

$$\frac{1}{3} + 2 \leqslant \frac{1}{3}u_n + 2 < \frac{1}{3}u_{n+1} + 2 \leqslant 3$$

$$1 \leqslant \frac{7}{3} \leqslant u_{n+1} < u_{n+2} \leqslant 3.$$

On vient de démontrer la propriété au rang n+1.

On a donc bien l'hérédité.

Ainsi, d'après le principe de récurrence, on a démontré que, pour tout $n \in \mathbb{N}$, on a $1 \le u_n < u_{n+1} \le 3$.

3. D'après la question précédente, on a démontré que pour tout $n \in \mathbb{N}$, on a $u_n < u_{n+1}$.

Donc la suite (u_n) est strictement croissante.

De plus la suite (u_n) est majorée par 3.

Donc la suite (u_n) converge vers une limite ℓ et $\ell \leq 3$.

4. Soit f la fonction définie sur l'intervalle [1; 3] par $f(x) = \frac{1}{3}x + 2$.

La fonction f est continue sur l'intervalle [1;3].

La suite (u_n) est de la forme $u_{n+1} = f(u_n)$, elle prend ses valeurs dans l'intervalle [1;3] et converge donc vers une limite ℓ tel que $1 \leq \ell \leq 3$.

Donc l est solution de l'équation $f(\ell) = \ell$.

$$\frac{1}{3}\ell + 2 = \ell$$

$$\frac{2}{3}\ell = 2$$

$$\ell = \frac{2}{\frac{2}{3}}$$

$$\ell = 3$$

Ainsi la suite (u_n) converge vers 3.

Sa dérivée est la fonction f' définie sur \mathbb{R} par $f'(x) = 5x^4 - 20x^3$. Sa dérivée seconde est la fonction f'' définie sur \mathbb{R} par

$$f''(x) = 20x^3 - 60x^2 = 20x^2(x-3)$$

Les variations de f' se déduisent du signe de sa dérivée f''. D'où le tableau :

x	$-\infty$	0	3	$+\infty$
$20x^2$	+	0 +		+
x-3	_	_	Ó	+
f''(x)	_	0 -	0	+
Variations de f'				
Convexité de f	f est concave	f est cond	cave f est	convexe

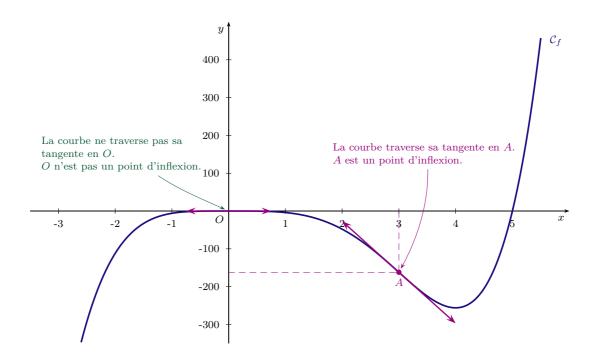
f est concave sur $]-\infty;3]$ et convexe sur $[3;+\infty[$.

L'équation f''(x) = 0 admet deux solutions $x_1 = 0$ et $x_2 = 3$.

En tenant compte des changements de variation de la dérivée f' on en déduit que la courbe C_f admet un seul point d'inflexion, le point A(3; f(3)).

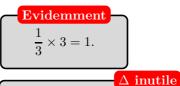
En effet:

- f''(0) = 0 mais, sur l'intervalle $]-\infty;3]$ $f''(x) \leq 0$ donc le point de la courbe C_f d'abscisse 0, n'est pas un point d'inflexion. (La fonction f est concave sur $]-\infty;3]$).
- f'' s'annule en 3 en changeant de signe donc le point A(3;-162) est un point d'inflexion de la courbe \mathcal{C}_f . (La fonction f est concave sur $]-\infty;3]$ et convexe sur $[3;+\infty[)$.



1. Pour tout réel x, on a :

$$f'(x) = \frac{1}{3} \times 3x^2 - 3 \times 2x + 8 = x^2 - 6x + 8.$$
De plus $(x - 4)(x - 2) = x^2 - 4x - 2x + 8 = x^2 - 6x + 8.$
Donc $f'(x) = (x - 4)(x - 2).$

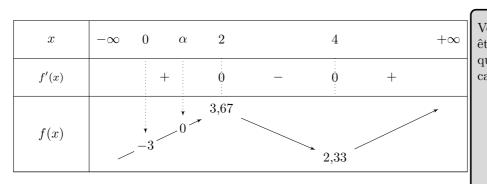


2. La fonction f' est une fonction polynôme du second degré avec $a=1,\,b=-6$ et c=8.

On étudie le signe de ce trinôme. Les racines (2 et 4) se déduisent de la forme factorisée (x-4)(x-2).

Avec Δ , on obtient : $\Delta = b^2 - 4ac = (-6)^2 - 4 \times 1 \times 8 = 4 > 0$. On en déduit que f' s'annule en $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-6) - \sqrt{4}}{2 \times 1} = 2$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-6) + \sqrt{4}}{2 \times 1} = 4$.

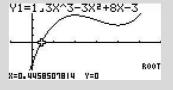
 $x^2 - 6x + 8$ est du signe de a partout, sauf entre ses racines 2 et 4.



Toujours pareil

Votre tableau de variations doit être cohérent avec la courbe

que vous trouvez avec votre calculatrice :



3. a. L'équation f(x)=0 admet une unique solution sur $[0\ ;\ 2].$ En effet :

- f est continue sur [0; 2].
- f est strictement croissante sur [0; 2].
- 0 est une valeur intermédiaire entre -3 et 3,67.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution α sur [0; 2].

Sur $]-\infty$; 0] et $[2; +\infty[$, l'équation f(x)=0 n'a pas de solution.

b. En utilisant la calculatrice, on obtient $\alpha \simeq 0, 45$.

4. f''(x) = 2x - 6.

f'' est une fonction affine qui s'annule en x=3.

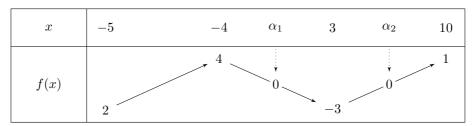
5. a. Convexité de f:

x	$-\infty$		3		$+\infty$
f''(x) = 2x - 6		_	0	+	
Convexité de f	f	est concave	f	est convexe	

b. La fonction f'' s'annule et change de signe en x=3. On en déduit que la fonction f admet un point d'inflexion dont l'abscisse est 3. Son ordonnée est donnée par f(3).

f(3) = 3. Ainsi, le point d'inflexion a pour coordonnées (3; 3).

1. On commence par placer les 0 de la fonction, dans la partie inférieure, et leur antécédent, dans la partie supérieure du tableau de variations de f.



- La fonction f ne peut pas s'annuler sur l'intervalle [-5; -4] car son minimum vaut 2 > 0 sur cet intervalle. On ne peut donc pas appliquer le T.V.I. sur [-5; -4].
- Sur l'intervalle [-4; 3]:
 - * f est continue sur [-4; 3];
 - * f est strictement décroissante sur [-4; 3];
 - * 0 est une valeur intermédiaire entre les images f(3) = -3 et f(-4) = 4.

A savoir

Il y a trois points à vérifier pour utiliser le corollaire du TVI.

D'après le corollaire du T.V.I., l'équation f(x) = 0 admet une unique solution $\alpha_1 \in [-4; 3]$.

- On recommence sur l'intervalle [3; 10] :
- * f est continue sur [3; 10];
- * f est strictement croissante sur [-4; 3];
- * 0 est une valeur intermédiaire entre les images f(3) = -3 et f(10) = 1.

D'après le corollaire du T.V.I., l'équation f(x) = 0 admet une unique solution $\alpha_2 \in [3; 10]$.

On conclut que l'équation f(x) = 0 admet exactement deux solutions α_1 et α_2 dans l'intervalle [-5; 10].

2. Tableau de signes de f(x) sur [-5; 10]:

x	-5		α_1		α_2		10
Signe de $f(x)$		+	0	_	0	+	

Explications

On utilise le tableau de variations pour dresser ce tableau de signes. N'hésitez pas à faire apparaître les signes sur les flèches.

Exercice 7

1. Pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 + 5 > 0$. La fonction f est donc strictement croissante sur \mathbb{R} .

$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} 5x - 10 = +\infty$$

$$\lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to -\infty} 5x - 10 = -\infty$$

$$\lim_{x \to -\infty} 5x - 10 = -\infty$$
Par somme,
$$\lim_{x \to -\infty} (x^3 + 5x - 10) = -\infty$$

6

On obtient le tableau de variations de f sur \mathbb{R} .

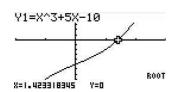
x	$-\infty$ α $+\infty$
Signe de $f'(x)$	+
Variations de f	$-\infty$ $+\infty$

2. Application du TVI sur \mathbb{R} :

- f est continue sur \mathbb{R} ;
- f est strictement croissante sur \mathbb{R} ;
- 0 est une valeur intermédiaire entre $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.

D'après le corollaire du T.V.I., l'équation f(x)=0 admet une unique solution α réelle.

3. En utilisant la calculatrice :



Calculatrice

On obtient cette représentation avec $X_{Min}=-2$, $X_{Max}=3$, $X_{Scale}=1$ $Y_{Min}=-20$, $Y_{Max}=10$ et $Y_{Scale}=2$.

Avec le solveur graphique Gsolv , puis root on obtient cet affichage.

$$\alpha \simeq 1,42$$